Convergence of Lagrange interpolation series in the Fock spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Extended Lagrange Interpolation

The authors give a procedure to construct extended interpolation formulae and prove some uniform convergence theorems.

متن کامل

Circle Packing and Interpolation in Fock Spaces

It was shown by James Tung in 2005 that if a sequence Z = {zn} of points in the complex plane satisfies inf n6=m |zn − zm| > 2/ √ α, then Z is a sequence of interpolation for the Fock space F p α . Using results from circle packing, we show that the constant above can be improved to √ 2π/( √ 3α), which is strictly smaller than 2/ √ α. A similar result will also be obtained for sampling sequences.

متن کامل

On quadrature convergence of extended Lagrange interpolation

Quadrature convergence of the extended Lagrange interpolant L2n+1f for any continuous function f is studied, where the interpolation nodes are the n zeros τi of an orthogonal polynomial of degree n and the n+ 1 zeros τ̂j of the corresponding “induced” orthogonal polynomial of degree n + 1. It is found that, unlike convergence in the mean, quadrature convergence does hold for all four Chebyshev w...

متن کامل

Sampling and Interpolation in Bargmann-fock Spaces of Polyanalytic Functions

We give a complete characterization of all lattice sampling and interpolating sequences in the Fock space of polyanalytic functions (polyFock spaces), displaying a ”Nyquist rate” which increases with the degree of polyanaliticity. This is done introducing a unitary mapping between vector valued Hilbert spaces and poly-Fock spaces. This mapping extends Bargmann ́s theory to polyanalytic spaces. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publicacions Matemàtiques

سال: 2014

ISSN: 0214-1493

DOI: 10.5565/publmat_58114_05